
 Win32s 1.1 Programmer's Reference
Chapter 1 Introduction
Win32s System Requirements
Installing Win32s

Making a Floppy-disk Version of Win32s
Installing Win32s from a Floppy Disk
Installing Win32s from CD-ROM or a Network
Verifying Win32s Installation

Disabling Win32s

Chapter 2 Win32s Technical Overview
Features
Architecture
Coordination Between Windows 3.1 and Win32s
Message Handling
Memory
Processes and Tasking
Win32 Dynamic Link Libraries
File Input and Output
Floating-Point Emulation
Printing

Chapter 3 Win32s Programming Details
Preemptive Multitasking
Message Handling
Memory Management
C Run-time Support
File Input and Output
International Support

Localized Versions of Win32s
Code Page and Unicode Translation Support

Performance Considerations
Advanced Features
16-bit and 32-bit Code Mixing
Device Drivers

Chapter 4 Universal Thunk
Universal Thunk Design
Translation List
Universal Thunk Implementation Notes

Chapter 5 Win32s Development with the Win32 SDK
Win32 SDK Support
Installing Win32s Development Files
Porting Tool
Debugging and Testing

Remote WinDbg
Debugging Session Example
Win32s Debugging DLLs
Automated Testing Using Microsoft Test

Application Profiling
Kernel Debugger

Chapter 6 Shipping Win32s with Win32 Applications
Win32s Installation Rules
Win32s File Installation and Configuration
Win32s Setup Sample

Appendix A
Win32s Version 1.1 Release Notes
Unsupported Features

Appendix B System Limits
Window Manager (User)
Graphics (GDI)
System Services (Kernel)

Networking
Multimedia

Appendix C Win32s API Reference

Copyright

CHAPTER 1 Introduction
Microsoft® Win32s(TM) version 1.1 is an operating system extension that allows
Win32(TM) applications for Microsoft® Windows NT(TM) to run on Microsoft®
Windows(TM) version 3.1 and Microsoft® Windows for Workgroups(TM).
Win32s offers software developers:
• A 32-bit programming model for Windows 3.1 which is binary compatible with

Windows NT
• Performance advantages of 32-bit mode
• Win32 semantics for the application programming interface (API)
• A rich subset of the full Win32 API found on Windows NT
• An established market of Windows 3.1 systems and the new Windows NT market to

sell Win32 applications
• Ship a single Win32 product for both Windows NT and Windows 3.1

Win32s consists of a virtual device driver (VxD) and a set of dynamic link libraries (DLLs)
that extend Windows 3.1 to support Win32 applications. The Win32s files must be
shipped with the Win32 application and installed on the Windows 3.1 system.
The Microsoft Win32 Software Development Kit (SDK) provides the following Win32s
components:
• Win32s binaries and Setup program to install Win32s on a Windows 3.1 system
• Development files as part of the Win32 SDK to create, debug, test, and ship your

Win32 application and Win32s files.

The Win32 SDK relies on Windows NThosted development tools, such as the compiler
and debugger, to build and test your Win32 application.
Win32s is a licensed technology and a number of compiler vendors will provide Win32
development solutions on MS-DOS®, Windows 3.1, and Windows NT platforms.
This chapter provides Win32s installation instructions using a setup program provided
on the Win32 SDK CD-ROM. The remainder of the manual covers issues developers
should consider when writing Win32 applications targeted for both Windows NT and
Windows 3.1.

Win32s System Requirements
To install Win32s and run Win32 applications, you need:
• A system running Microsoft Windows for Workgroups or Windows 3.1 in enhanced

mode with paging enabled (default installation)
• A 386, 486 or Pentium(TM) processor (386sx and 486sx processors are supported)
• 4MB of extended memory is recommended (2MB minimum)
• 1MB of hard disk space for Win32s and another 250K for FreeCell (an optional

demonstration program)

Installing Win32s

The Win32s system files can be installed from the Win32 SDK CD-ROM, from a shared
CD-ROM drive over the network, or from a 3.5-inch or 5.25-inch high density floppy disk
to which youve copied the system files from the Win32 SDK. In all cases, the same
setup program is used to install and enable Win32s on a Windows 3.1 system.

Making a Floppy-Disk Version of Win32s
The Win32s files are located on the Win32 SDK CD-ROM in the directory \MSTOOLS\
WIN32S\FLOPPY. Making a floppy-disk version of Win32s requires either an MS-DOS or
Windows NT system that can access a CD-ROM drive directly or over a network.
1. Place a blank, formatted disk (3.5- or 5.25-inch) in your floppy drive.
2. Copy all files in \mstools\win32s\floppy into the root directory of the floppy disk.

Installing Win32s from a Floppy Disk
1. Start your computer, then start Windows (type win at the MS-DOS prompt)
2. Place the Win32s Setup Disk in your floppy drive.
3. In the File Manager window, display the files on the floppy, then double-click on

SETUP.EXE to run the Setup program.
4. Follow the setup instructions to complete the installation.

Installing Win32s from CD-ROM or a Network
1. Start MS-DOS with appropriate software for accessing a local CD-ROM drive or a

remote CD-ROM drive over the network.
2. Start Windows (by typing win at the MS-DOS prompt).
3. Use the File Manager to access the Win32 SDK CD-ROM.
4. In the File Manager window, display the files in the \mstools\win32s\floppy directory,

then double-click on SETUP.EXE to run the Setup program.
5. Follow the setup instructions to complete the installation.

Verifying Win32s Installation
In addition to installing the Win32s system components, the Win32s Setup program
optionally installs the Win32 card game FreeCell, the same program that ships as part of
Windows NT. After installing Win32s, you can run FreeCell to verify that Win32s is
installed correctly. FreeCell is located in the Program Manager group Win32 Applications,
which the Win32s Setup program creates.

Note
If installing Win32s on Windows 3.1, it is necessary to run the MS-DOS Share utility
before starting Windows. Add SHARE.EXE to your AUTOEXEC.BAT file. SHARE.EXE is not
required for Windows for Workgroups.
It is recommended that your CONFIG.SYS file set number of files to at least 30. Set
files=30 in CONFIG.SYS if there is no files command line or if it specifies less than 30
files.

Disabling Win32s

It should be unnecessary to disable Win32s. The Win32s DLLs will only be loaded when
a Win32 application is executed. The Win32s VxD is loaded when Windows starts, but
has little memory overhead. If you must disable Win32s or wish to do a clean
reinstallation of Win32s, take the following actions:
• Remove the Win32s VxD line from Windows SYSTEM.INI file in the [Enh386] section:

device=c:\windows\system\win32s\w32s.386

• Delete the W32SYS.DLL and the WIN32S16.DLL files from the <windows>\system
directory and all files in the <windows>\system\win32s subdirectory (<windows> is
the Windows installation directory such as c:\windows.)

• Restart Windows

CHAPTER 2 Win32s Technical Overview
This chapter provides architectural details and high-level functionality information on
features supported by Win32s.

Features
The Win32s mapping layer allows Win32 applications to make 32-bit calls to Windows
3.1, which is responsible for all graphics and windowing operations. The Windows API in
Windows 3.1 and Windows NT have many common features.
The following list highlights Windows 3.1 features available via the Win32s API:
• Complete windowing interfaces (User)
• All graphics functions (GDI)
• OLE (object linking and embedding) version 1.0
• DDE/DDEML (dynamic data exchange and DDE Management Library)
• TrueType fonts
• Common dialogs

In addition to supporting Windows 3.1 functionality, the following Windows NT features
are also supported via Win32s on Windows 3.1:
• Structured exception handling (SEH)
• Sparse memory (Virtual memory API)
• Growable heaps (Heap API)
• Named shared memory

The following new features have been added in Win32s 1.1:
• Memory-mapped files (backed by disk image)
• Network support (NetBios and Windows Sockets 1.1* APIs)
• Multimedia support (sound APIs)
• International Support (localized versions of Win32s and Code Page/Unicode(TM)

translation APIs)

* Win32s provides a 32-bit Windows Socket translation layer and requires that your
system already has 16-bit Windows Sockets 1.1 installed. There are a number of third
party vendors that ship TCP/IP and Windows Sockets products for MS-DOS and Windows.
Win32s offers a 32-bit solution for Windows 3.1 supporting binary compatibility with
Windows NT running on 386/486 hardware and source compatibility to RISC platforms
such as the R4000 and DEC(TM) Alpha AXP(TM).

Architecture
Figure 1 illustrates the key pieces of Win32s. The dark gray boxes represent Win32s
components; the light gray boxes depict Windows 3.1 components. The 32-bit Win32
application dynamically binds to Win32s versions of Win32 system DLLs such as:
KERNEL32.DLL, GDI32.DLL, and USER32.DLL. A large percentage of the API calls are

then handled by the general 32/16 thunking DLL, WIN32S16.DLL, which is responsible
for repacking the stack, truncating or expanding parameters, mapping message
parameters (due to Win16/Win32 differences), etc. The VxD is trusted ring 0 kernel code
that handles low-level system services such as exception handling, floating-point trap
emulation, and memory management.

Figure 1. Win32s Architecture.

Because Windows 3.1 does not recognize and cannot load Windows NT executables,
Win32s provides Windows NT loader code. Loader services are handled by
W32SKRNL.DLL.
The light gray User, GDI, and Kernel components are the Windows 3.1 window manager,
graphics engine, and kernel services DLLs, respectively. Figure 1 shows the general flow
of control when a Win32 application makes a Win32 call. Most calls are passed to
Windows 3.1, which actually implements the call.

Coordination Between Windows 3.1 and
Win32s
Win32s and Windows 3.1 system-code are tightly coupled. Win32s is a true system
extension to the Windows 3.1 operating system code.
The first level of coordination occurs in the Windows 3.1 loader. The Windows 3.1 loader
was designed to recognize the presence of a Win32s loader. When Windows 3.1
attempts to load an executable and cannot identify the image header, the Win32s
loader (if present) is called to determine whether the image is a Windows NT
executable, known as PE for Portable Executable. If the image is not a PE image,
Windows 3.1 reports that file cannot be executed. If the image is a PE image, the
Win32s loader loads the image table (fix-up tables, etc.) and then demand-loads the
rest of the image as the program executes.
Win32s also hooks the Windows 3.1 resource loader. One reason to do this is so that

application icons appear correctly in the Program Manager, or other resource viewing
utilities. When Windows 3.1 attempts to read a resource from a PE image (something
that it cannot do), Win32s fabricates the resource (such as the icon) as a 16-bit
resource. In this way, Win32 applications can be added to the Program Manager and still
have properly displayed icons for selection. This support is transparent to both the
programmer and the user.
Win32s uses a similar method to support versioning. Versioning APIs are new to
Windows 3.1 and allow version-marked executables to be checked by utilities such as
setup tools. Win32s hooks Windows 3.1 so that version calls return valid information
when a 16-bit Windows application version-checks a Win32 application.
Messaging between applications is generally handled in a straightforward manner by
the Win32s thunk layer. However, special cooperation between Win32s and Windows 3.1
also allows Windows hook APIs and message subclassing to be supported. A Win32
application can install a hook to monitor all Windows applications (16- and 32-bit).
Win32s ensures that the Win32 hook sees a 32-bit format of all messages regardless of
the message source or destination.
Windows 3.1 and Win32s must also have cooperative memory management between
the Win32s VxD and Win386. Win32s also manages the task of translating pointers
passed via the Windows API between the Win32 application and 16-bit Windows system
code.
For these reasons, Win32s should be considered an operating system extension to
Windows 3.1 that supports 32-bit programming via the Win32 API.

Message Handling
Message handling in a Win32 application is generally identical to message handling in
an equivalent 16-bit Windows application. A Win32 application will receive messages in
identical order as a Win16 application because Win32s relies on Windows 3.1 to deliver
messages. Message order is also the same on Windows NT.

Memory
Windows 3.1 implements a shared memory design, in which all Windows processes
reside in one global memory heap. Windows NT, however, isolates processes into their
own, private virtual address space. Win32 applications running on Windows 3.1 coexist
in the same shared global memory heap as other Win32 and Win16 applications.
Win32s supports the following features for Win32 executables or DLLs:
• Multiple Win32 executables and DLLs can be loaded simultaneously.
• Multiple Win32 executables can reference the same Win32 DLL.
• Win32 DLLs referenced by multiple Win32 applications share a single copy of the DLL

code and data.
• Win32s DLLs and VxD are shared by all Win32 applications.
• Win32s supports executing data as code, such as dynamic code generation.
• Win32 applications see a flat 32-bit address space (CS, DS, SS and ES map a single

address space).
• Win32s supports demand-paging of executables for efficient loading of executables,

DLLs and data.

• Win32s version 1.1 allocates a non-growable stack for each Win32 process up to
128K. Stack size is specified at link time (linker switch); Win32s will create at least a
64K stack.

One impact of a global shared heap and not being able to use selectors for
dereferencing addresses (as occurs in Win16 applications) is that multiple instances of
Win32 executables do not share code. The loader must fix up all 32-bit linear addresses
to code and data when an executable is loaded. Win32 applications do not move in
memory nor are segment registers available to switch context to a second instance
while still sharing the same code. Therefore, each instance of a Win32 executable must
be loaded into memory and code cannot be shared.

Note
Win32 applications should not be designed to assume that all Win32 applications run in
the same address space. Such applications will not run on Windows NT or on future
versions of Windows for MS-DOS. Also, Win32s may implement sparse memory using
separate address spaces in a future release.

Processes and Tasking
Win16 and Win32 applications coexist seamlessly on the same desktop (display).
Win32s assures that Win16 applications see Win32 applications as other Win16
applications, and that Win32 applications see Win16 applications as other Win32
applications. A Win32 application can enumerate windows in the system and will receive
32-bit window handles for both Win32 and Win16 applications. This means that Win32
applications can send messages to other windows or can use DDE or OLE to
communicate with other processes without regard to the 16- or 32-bit nature of the
other application.
The Windows 3.1 non-preemptive, message-driven scheduler is responsible for
scheduling both Win16 and Win32 applications. Win32 applications operate under the
same constraints as Win16 applications. To keep the user interface responsive, Win32
applications must check their message queue regularly. On Windows NT, a Win32
application that does not check its message queue and handle messages in a timely
manner only affects its own user interface and the user may switch away and work on
other applications. Windows 3.1, however, uses messages to schedule processes.
Therefore, applications (16- or 32-bit) must handle messages in a timely manner in
order to keep Windows 3.1 responsive.

Win32 Dynamic Link Libraries
Windows NT supports new features for 32-bit DLLs not available to 16-bit DLLs. Win32s
supports Windows NT DLL features such as:
• Win32 DLLs in Windows 3.1 receive the same notifications as on Windows NT when

each process loads or links to the DLL and when each process frees the DLL or
terminates. This includes abnormal termination.

• DLLs are initialized in the same order as on Windows NT. This applies to applications
with multiple DLLs.

• The Win32s loader searches for Win32 DLLs first in the Win32s directory and then
uses the same search algorithm as Windows NT.

• Thread local allocations (TlsAlloc) are made system-wide rather than on a per-
process basis providing an instance data solution for DLLs on Win32s.

File Input and Output
The Win32 API provides all functions for manipulating files such as open, seek, move,
and rename. The Win32 API is required since calling MS-DOS functions via Interrupt 21H
is not supported. Many applications rely on the C run-time library which in turn relies on
Win32 API functions for file I/O. For this reason, the C run-time library is portable and
calls Win32s for file I/O.

Floating-Point Emulation
Win32s provides a floating-point trap emulator to support Win32 applications with in-
line math coprocessor instructions. This support allows these applications to function
even if they are run on systems without coprocessor hardware. If a coprocessor is
present, the trap emulator is not involved.
The same floating-point emulator is used on both Windows NT and Win32s ensuring
compatible results between a Win32 application running with Windows 3.1 and with
Windows NT.
Win32 applications can use structured exception handling (SEH) to handle exceptions
generated by the coprocessor. SEH allows the Win32 application to handle the exception
itself and continue or allow the system to handle the exception, generally resulting in
termination of the application.

Printing
Win32 and Win32s support existing printing code. Win32s relies on the existing Windows
3.1 printer drivers for output and does not support loading 32-bit Windows NT printer
drivers.
Win32s supports all Windows 3.1 escapes except those marked as obsolete in the
Windows 3.1 SDK. Windows NT implements a small set of    fundamental escapes for
ease in portability, but uses named API functions rather than device-specific escapes to
support advanced hard copy output. Therefore, it is critical to query for the support of
an escape rather than assume the escape will always be present. If you find that a
particular escape is not supported, use an alternate method to accomplish the same
task.
Windows 3.1 applications can use printer-specific escapes, if available, and should use
general-purpose code for doing the same thing if the escape is not supported. This
approach should also work in Windows NT. Alternatively, you can call the new Win32
printing API functions that replace the driver-specific escapes when the application runs
with Windows NT.

CHAPTER 3 Win32s Programming Details
This chapter provides detailed programming information that developers should be
aware of in using the Win32 API and C run-time library in applications that will run on
both Windows NT and Windows 3.1. Programming solutions and recommendations are
provided to create portable applications and avoid architecture dependencies.

Preemptive Multitasking
Windows NT is a preemptive multitasking operating system; Windows 3.1 relies on
message-driven multitasking. This difference can cause compatibility problems when
Win32 applications are run on the different systems unless properly designed and
tested.
Data manipulations in DLLs must be guarded by synchronization objects. Windows 3.1
DLL operations are atomic. For example, when an application receives a message, it will
be scheduled to handle that message and be given control of the CPU. The application
will own the CPU until it checks its message queue. When the application checks its
queue, Windows 3.1 may opt to schedule another application. When an application
owns the CPU, no other Windows application is scheduled. Therefore, the application
handling a message can call a DLL, update data managed in the DLL, and be assured
that no other applications call the DLL at the same time.
This is not true of Win32 applications running with Windows NT. For example, a Win32
application may call a DLL which begins to update DLL-managed data; the preemptive
scheduler may pass control of the processor to another process, which could call the
same DLL. If the second process also updates data in the DLL, the data will be
corrupted. To protect DLL data, the Win32 API provides a set of synchronization objects.
These objects are supported in Win32s. Functions like EnterCriticalSection return
success even though they are unnecessary in Windows 3.1.
By supporting synchronization calls in Win32s, applications can execute a common code
path and simplify programming and testing.

Note
It is critical to test an application in both Windows 3.1 and Windows NT to ensure correct
operation.

Message Handling
Win32 and Win16 applications coexist in the system and can pass messages without
knowing whether the other application is a 16- or 32-bit application. Win32s maps
messages transparently, offering Win32 applications and 16-bit Windows messages with
Win32 semantics.
For private messages (messages defined by an application, not by the Win32 API),
Win32s cannot determine the contents of wParam and lParam message parameters.
Therefore, the following effects will occur when passing private messages between
Windows applications:
• Private message from Win16 to Win32: wParam is 0 extended.
• Private message from Win32 to Win16: high-order word of wParam is lost.

• Private message from Win32 to Win32: high-order word of wParam is lost.
• Private message from Win16 to Win32 or Win32 to Win32: lParam is unaffected.

This behavior has the following impact: Passing a pointer via a private message in
lParam is safe between two cooperative Win32 applications; passing a linear 32-bit
pointer in lParam via a private message to a Win16 application will result in an invalid
pointer when the Win16 application uses it because Win32s cannot translate this
pointer. Because Windows 3.1 is used to deliver messages, the high word of wParam is
lost even when private messages are being passed only between Win32 applications.
Again, this is limitation of private messages, not public messages such as
WM_COMMAND.
Win32s supports message hooks. Since hooks can be used to intercept messages
between applications, Win32s assures that hooks installed by Win16 applications can
intercept messages destined for Win32 applications; and similarly Win32 hooks can
intercept messages destined for Win16 applications. In each case the 16- or 32-bit
message hook will intercept messages for Win16 and Win32 applications but translated
into the appropriate 16- or 32-bit message form.

Memory Management
Windows 3.1 uses a single address space in which all Windows (16- and 32-bit)
applications run. Therefore, DLL data segments are shared among all processes that call
the DLL. Windows NT has separate address spaces with 2GB of virtual memory available
for each process. The default DLL behavior is to have private DLL data, also known as
instance data. Windows NT DLLs can be built to have shared DLL data for compatibility
with Windows applications that require this feature.
In order to specify that DLL data should be shared, add the following lines to your Win32
DLLs DEF file:
SECTION
.bss SHARED READ WRITE ; Share uninitialized global variables
.data SHARED READ WRITE ; Share initialized global variables

Note:
If your port of a 16-bit Windows application to Win32 relies on shared DLL data, you
should build the DLL indicating shared data. The default linker behavior is to create
instance data DLLs resulting in shared DLL data on Windows 3.1 and instance data on
Windows NT.

To facilitate communication and passing of data between Win32 applications and other
Win16 applications (and Windows 3.1 itself), Win32s supports the various memory
allocation functions differently than on Windows NT.
On Windows NT:
• VirtualAlloc supports sparse memory allocation
• GlobalAlloc maps to HeapAlloc (always commits memory)
• LocalAlloc maps to HeapAlloc
• HeapAlloc implements suballocation from large memory block allocated using

VirtualAlloc
• C run-time malloc maps to HeapAlloc

On Win32s:
• VirtualAlloc supports sparse memory allocation
• GlobalAlloc relies on Windows 3.1 GlobalAlloc and always allocates committed and

fixed memory
• LocalAlloc maps to HeapAlloc
• HeapAlloc implements suballocation from large memory block allocated using

VirtualAlloc
• C run-time malloc maps to HeapAlloc
The primary difference is the behavior of GlobalAlloc. Win32s relies on Windows 3.1 for
global allocation. This allows a 32-bit application to simply pass the handle to global
memory to Windows (such as the clipboard) or to another 16-bit application. The
memory can then be locked, unlocked, resized or freed; the 16-bit side (system or
application) is never aware that the memory was allocated by a 32-bit process. This is
not true for the other memory allocation functions. In these cases Win32s has to create
and manage handles dynamically using a private handle cache.
VirtualAlloc and HeapAlloc are better memory allocation methods for application-
manipulated data. GlobalAlloc is more efficient for data that will be passed back and
forth between the Win32 application and system or other applications.
Thread Local Storage is supported on Win32s even though threads are not. TLS is useful
in Win32 DLLs on Win32s to create DLL instance data. By default, all global variables in
a DLL on Windows 3.1 are shared by all processes that call the DLL. This can be
inconvenient when the DLL must maintain global information that applies only to a
particular process calling the DLL. The TLS implementation in Win32s creates system-
wide index such that a unique TLS index is available for each process which links to a
DLL.
In the DLL initialization code fragment below, the DLL will allocate a TLS index for each
process that attaches to the DLL on Windows NT. On Win32s, a TLS index is only
allocated when the first process attaches to the DLL. Each Win32 process can use
dwIndex in calls to TlsSetValue and TlsGetValue to store per-process data (such as a
pointer to allocated data unique to each process).
Another way to look at TLS support on Win32s is that each process in Windows 3.1 uses
the TLS index like a thread does on Windows NT.
The following DLL initialization code fragment illustrates how to initialize TLS in a DLL
that will work on both Windows NT and Win32s:
BOOL APIENTRY DllEntryPoint(HINSTANCE hinstDll, DWORD fdwReason,
 LPVOID lpvReserved)
{
 static BOOL fFirstProcess = TRUE;
 BOOL fWin32s = GetVersion() & 0x80000000;
 static DWORD dwIndex;

 if (dwReason == DLL_PROCESS_ATTACH) {
 if (fFirstProcess || !fWin32s) {
 dwIndex = TlsAlloc();

}
fFirstProcess = FALSE;

 }
 .
 .
 .

}

There should be a matching platform test in the DLL TlsFree cleanup code.

C Run-time Support
Win32 applications that rely on C run-time routines can choose to statically link the C
run-time routines with the application or dynamically link to a C run-time DLL. Windows
NT provides a C run-time DLL called CRTDLL.DLL located in the SYSTEM32 directory.
Applications do not need to ship this C run-time DLL since it is provided by the operating
system itself. Win32s also ships a C run-time DLL as part of the licensable Win32s
binaries. Therefore, an application can rely on the existence of the C run-time DLL on
both Windows NT and Win32s.
Using CRTDLL.DLL is useful for applications that have an executable and multiple DLLs
which all make C run-time calls. The CRTDLL.DLL is also useful for applications that
consist of multiple executables that share a single or set of application DLLs which all
rely on C run-time calls.
Because of the shared system memory of Windows 3.1, there are some aspects of
CRTDLL.DLL which cannot be supported. Multiple applications can link and use
CRTDLL.DLL simultaneously, but global variables such as __argc_dll and __argv_dll are
not exported by the Win32s version of CRTDLL.DLL. The portable method for
determining the command line parameters would be to call GetCommandLine. There
are several other similarly affected global variables such as: _environ and _iob.
The portable method to get environment variables when using CRTDLL.DLL is by calling
Win32 APIs GetEnvironmentStrings or GetEnvironmentVariable instead of
_environ.
The global_iob variable is an internal C run-time pointer to stdin/stdout/stderr file
handles. If you use CRTDLL.DLL and use standard handles in C run-time calls, such as
fwprintf (stdout, ...), your application will not load on Win32s and generate a run-time
error message about an _iob missing export. Use GetStdHandle with
ReadFile/WriteFile or C run-time functions _open and read/write.
If your application consists of a single executable with no DLLs, statically link the C run-
time.

File Input and Output
In network environments especially, or on a single system with multiple applications
opening a single file, applications should indicate how they would like to share, or not
share, files explicitly. If an explicit OF_SHARE flag in OpenFile is not specified, the
default on Windows 3.1 is OF_SHARE_COMPAT. On Windows NT, the default is
OF_SHARE_DENY_NONE. OF_SHARE_DENY_NONE does not allow files to be opened with
OF_SHARE_COMPAT. CreateFile and fopen do not support OF_SHARE_COMPAT. A file
opened with these functions cannot be open with OpenFile or _lopen in compatibility
mode. For further information, see the OpenFile documentation or on-line Win32 API
reference.
It is very important that file-sharing and locking is enabled. When running on Windows
3.1, be sure that SHARE.EXE has been loaded before starting Windows. Windows for
Workgroups provides file-sharing and locking support by default and SHARE.EXE should
not be loaded.

International Support
Win32 applications that are designed for international markets will find localized
versions of Win32s and code page support for manipulating resources.

Localized Versions of Win32s
Since Win32s consists primarily of a mapping layer, it is language independent.
Therefore, Win32s can be installed on localized versions of Windows 3.1 or Windows for
Workgroups. Win32s does have several low-level error messages that are displayed
when memory is low, the Win32s loader encounters a corrupt binary, etc. These error
message strings are isolated to the VxD and one 16-bit DLL, W32S.386 and
W32SYS.DLL, respectively.
To ship a localized version of a Win32 application with Win32s, you will need to replace
the English version of the w32s.386 and w32sys.dll with the appropriate language
version of these files from the \mstools\win32s\nls directory according to the table
below:
w32s.deu, w32sys.deu: German
w32s.esp, w32sys.esp: Spanish
w32s.fra, w32sys.fra: French
w32s.ita, w32sys.ita: Italian
w32s.sve, w32sys.sve: Swedish

This current set of languages matches those supported in the first release of Windows
NT. If your application requires additional language support, contact Microsoft Product
Support Services which are most easily reached on CompuServe. See the Win32 SDK
Getting Started booklet for CompuServe information.

Code Page and Unicode Translation Support
Windows 3.1 does not support Unicode, so Win32s 1.1 has been implemented without
Unicode support. However, Win32 application resources such as dialog boxes, menus
and message tables consist of Unicode strings. Win32s translates these resources
automatically using the Windows 3.1 code page. However, some applications may wish
to control string translation using other code pages.
Win32s 1.1 supports Code Page/Unicode translation via the following functions:
MultiByteToWideChar
WideCharToMultiByte
IsValidCodePage
GetCPInfo
IsDBCSLeadByte

These functions can be useful when creating dialog boxes dynamically within an
application. Dialog box templates require Unicode, not ANSI, character strings.
Win32s 1.1 installs the following OEM and ANSI code pages by default which are
appropriate for US and most Western European languages:
unicode.nls
c_437.nls
c_850.nls
c_1252.nls

The default code pages should be sufficient for most applications, however the following

set of code pages are provided in \mstools\win32s\nls and can be shipped with an
application that requires additional code page support; for example an application that
wishes to use the Greek code page. The table below lists the code pages supported by
the .NLS files provided:
Code Page    Canonical char. set name        ANSI OEM

Code Page Code Page
1250 Windows 3.1 Eastern European x
1251 Windows 3.1 Cyrillic x
1252 Windows 3.1 US (ANSI) x
1253 Windows 3.1 Gree x
1254 Windows 3.1 Turkish x
437 MS-DOS United States x
850 MS-DOS Multilingual (Latin I) x
852 MS-DOS Slavic (Latin II) x
855 IBM Cyrillic (primarily Russian)
857 IBM Turkish x
860 MS-DOS Portuguese x
861 MS-DOS Icelandic x
863 MS-DOS Canadian-French x
865 MS-DOS Nordic x
866 MS-DOS Russian (USSR) x
869 IBM Modern Greek

The OEM code page that is installed should match the code page used by MS-DOS which
is 437 in the US and generally 850 for Western Europe. Win32s 1.1 installs both of these
OEM code pages by default. Your setup program will need to install other OEM code
pages to match MS-DOS code pages for other languages.

Note
Use of code pages other than UNICODE.NLS and C_1252.NLS will require several file
handles and 150K-220K of virtual memory. This extra resource will only be consumed
when one of the five code page APIs listed above is called.

Performance Considerations
Calls to the Win32 API are translated before being passed to Windows. This involves
translating pointers and repacking parameters on the stack, among other operations.
Therefore, there is an overhead associated with calling the Windows API. For functions
that require a large amount of processor time to complete (such as BitBlt), the
thunking overhead as a percentage of total API execution time is less than one percent.
Other functionsfor example, functions that simply query statushave a relatively high
thunking overhead. Test scenarios that call a broad selection of Win32 API functions take
approximately ten percent longer due to the thunking layer.
Therefore, an application that calls only Win32 API functions will experience a 10%
degradation. However, real applications have a mix of system calls and time spent in
the 32-bit routines of the application and generally will see a performance increase.
Win32s is a perfect candidate for applications that are data- and memory-intensive or
calculation-intensive, such as CAD packages, desktop publishing packages, image

manipulation tools, spreadsheet programs, and simulation software. Manipulating data
and performing calculations in 32-bit mode improves the performance of these
applications significantly. Win32 applications should see performance improvements
despite the slight overhead resulting from 32-bit to 16-bit translation (thunking) that
occurs during Windows API calls.
Several Win32 applications have been used to do performance analysis of Win32s by
comparing performance between 16- and 32-bit versions of the same applications. For
GDI-intensive operations used in these applications, the performance was found to be
roughly the same. For numeric computation and for traversing data, the Win32s
versions of the applications were up to 2 times faster.
The overall effect is that most Win32 applications using Win32s will see a performance
gain over their 16-bit Windows counterparts, with the added benefit that these new
applications are native 32-bit applications on Windows NT.
Using the following techniques can significantly improve the performance of your Win32
application on both Windows 3.1 and Windows NT:
• Use the Working Set Tuner provided with the Win32 SDK.
• Use the PolyLine function rather than MoveTo/LineTo operations.
• Local variables (stack variables) are faster to pass by reference between the Win32

application and the system.

Using PolyLine saves time in Win32s by minimizing the number of thunks that must be
passed through from the Win32 application to Windows 3.1 system code. This is
beneficial on both Win32s and Windows NT.
Pointer translation from 32-bits to 16-bits can be a time-consuming operation for
Win32s. Different types of memory (GlobalAlloc, LocalAlloc, VirtualAlloc, global
data, local data) take different amounts of time to have pointers translated. In general,
pointers to local variables will always be translated fastest since they are on the
applications stack, and Win32s has optimized translation of the stack pointer.

Advanced Features
Because the entire Win32 API is exported by Win32s, any Win32 application can be
loaded into Windows 3.1 since all functions will be fixed-up correctly by the loader.
Applications that call Win32 functions that cannot be implemented in Windows 3.1, such
as paths, threads, transformations, or asynchronous file I/O, will find that these
functions fail and return errors.
Unsupported APIs return error code appropriate for the function called. Win32s will set
the last-error code to ERROR_CALL_NOT_IMPLEMENTED which can be retrieved by
GetLastError. However, Win32 applications do not need to rely exclusively on error
return codes but can determine which Windows platform they are running on (Windows
3.1 or Windows NT) by calling the GetVersion function. The high-order bit of the
DWORD return value is zero when the Win32 application is running on Windows NT and
is one if the application is running on Windows 3.1.
An application can selectively, and as a run-time feature, implement different
functionality when the application is run with Windows 3.1 via Win32s or when run with
Windows NT. For example, a graphics application could offer Bezier curve drawing tools
when the paint program is run on Windows NT. The same tool could emulate this
functionality itself or not offer the feature with Windows 3.1. The application can use the
error return from these unsupported Win32 API functions in Win32s to determine the

proper plan of action.
When running on Windows NT, an application can spawn background threads to
complete tasks, something it cannot do when running on Windows 3.1, where it runs
only as a single-threaded application. But, consider that all Win32 applications
automatically benefit from the scheduler on Windows NT even if they do not use
multiple threads. Win32 applications execute with an asynchronous messaging model
on Windows NT, which allows users to switch away from an applications that are tied up
in long calculations. Therefore, taking advantage of threads when an application runs on
Windows NT is not required and most applications will just rely on the asynchronous
messaging model advantage.

Mixing 16-bit and 32-bit Code
Windows NT does not support mixing 16- and 32-bit code. Such support is contrary to
the portable design of Windows NT running on x86 (CISC) and R4000 (RISC) systems.
The Win32 SDK tools generate only 32-bit code, and the Windows NT linker and loader
have no support for fixing up 16-bit segmented addresses.
Therefore, for binary compatibility of a Win32 application running on Win32s and
Windows NT, mixing is not supported by Win32s. Mixing is not limited to embedding 16-
bit routines in a Win32 application, such as static library code. There is no support for
Win32 applications directly loading 16-bit DLLs or vice versa.
Applications that rely on 16-bit DLLs, such as licensed DLLs for which obtaining 32-bit
versions is difficult, have several choices:
• Use a client/server architecture where all 16-bit DLLs are bound to a small, custom

16-bit server application. This custom 16-bit server can communicate with the Win32
application via DDE, shared memory, or other IPC mechanism. The client/server
solution will work in Win32s and Windows NT.

• A unique solution provided by Win32s allows Win32 applications to use existing 16-bit
DLLs and device drivers. The Universal Thunk, discussed later in this document, is not
supported on Windows NT but is available as a stepping stone for moving
applications to 32-bit on Windows 3.1.

Device Drivers
Windows NT runs applications in user-mode, but only kernel-mode device drivers
running in privileged-mode can access devices. Because of fundamental differences in
architecture between Windows 3.1 and Windows NT, Win32s does not support the
Windows NT device-driver model. For binary compatibility with Windows NT, Win32
applications should not access hardware directly within the application.
This poses a problem similar to mixing 16-bit and 32-bit code. The general solution is to
architect your Win32 application such that the main application has a standard interface
to a Win32 DLL (service provider). The Win32 DLL uses a client/server design to
request/transfer data to a 16-bit server responsible for hardware access on Windows
3.1.
To support this application in Windows NT, the DLL should be replaced by a Windows
NTspecific DLL that uses IOCTLs to communicate directly with the kernel-mode driver, or
uses Win32 APIs for supported devices. This solution isolates the platform-specific code
to a DLL, which can be correctly installed during setup.

This mixing restriction creates an interesting scenario for printing. The 16-bit Windows
applications load and call printer drivers directly, by using calls such as LoadLibrary,
GetProcAddress, and ExtDeviceMode. Win32s handles these printer drivers
specifically by creating a mapping thunk dynamically. The address returned to the
Win32 application by GetProcAddress is actually the address to the thunk that makes
the 32/16 transition and calls the printer driver. This Win32s solution for printing has
been generalized for Win32 applications with the universal thunk solution.

CHAPTER 4 Universal Thunk
Binary compatibility and the requirement to provide natural migration to Windows NT
creates a portability problem for ISVs who have Windows applications that require
device drivers. Windows NT does not support mixing 16- and 32-bit code in the same
process. The mixing restriction also precludes 16-bit DLLs from being called by Win32
applications.
There are a number of IPC mechanisms, such as DDE, that allow data to be passed
between Win32 and 16-bit Windows processes, but the bandwidth is not sufficiently high
for some types of applications. The universal thunk (UT) allows a Win32 application to
call a routine in a 16-bit DLL. There is also support for a 16-bit routine to call back to a
32-bit function. The simple Win32s thunk used to implement this design also translates
a data pointer to shared memory, from flat to segmented form, allowing large amounts
of memory to be transferred between drivers and Win32 applications.
This design allows a Win32 application to isolate driver-specific routines in a 16-bit DLL.
The Win32 application remains portable across Windows 3.1 and Windows NT; in
Windows NT, the 16-bit DLL is replaced with a 32-bit DLL that communicates to devices
by using the Windows NT model.

Universal Thunk Design
Figure 2 illustrates a Win32 application using a Win32 service DLL on Windows NT.
    Win32 App       Win32 DLL

Figure 2. Win32 application using a Win32-service DLL

Figure 3 illustrates how the same Win32 application running on Windows 3.1 uses the
UT mechanism to access services provided by a Win16 DLL. Figure 3 illustrates thunking
from 32-bit to 16-bit, thunking in the reverse direction works in a similar way.
The same version of the 32-bit application runs on Windows 3.1 and Windows NT. For
the service provider, two different modules are required. Both provide the very same
services, one using Win32 DLL on Windows NT, and the other using 16-bit DLL by way of
UT.
Win32 App Win32 UT DLL Win16 UT DLL       Win16 DLL

32 BIT 16 BIT

Figure 3. Universal Thunk Design

UTRegister registers a UT with Win32s that can be used to access
16-bit code from a 32-bit application running on Win32s. UTRegister will automatically
load the 16-bit DLL specified by name as a parameter to this function. The 16-bit DLL
exports two functions: an initialization function InitFunc and function UTFunc.
InitFunc is called once when UTRegister is called and is optional. UTFunc is called
indirectly via a 32-bit callable stub from the Win32 application.
The thunk can be destroyed by calling UTUnRegister.
Registering the UT enables two capabilities for communicating between 32-bit and 16-
bit routines. The first capability is to allow a Win32 application to call a 16-bit routine
passing data using global memory. This is a Win32 application initiated data transfer
mechanism. The second capability is to register a callback routine by which 16-bit code
can callback into a 32-bit routine in a Win32 DLL. Again, global memory is used to
transfer data.
UTRegister will result in Win32s loading the specified DLL (using LoadLibrary) with
normal Windows 3.1 DLL initialization occurring. Win32s will then call the InitFunc
routine (indirectly via the UT) passing this function a 16:16 alias of the 32-bit callback
function. The InitFunc routine can return data in a global memory buffer. UTRegister
will also create a 32-bit callable stub for UTFunc and return its address to the 32-bit
DLL. Also a 16-bit callable stub might be created to reflect the 32-bit callback and will
be passed to the 16-bit DLL via its InitFunc.
The UT will translate the 32-bit linear pointer to shared memory to a 16:16 segmented
pointer for the 16-bit UTFunc routine. It is the applications responsibility to define the
format and packing of the data in the global memory. Care should be taken when
passing information in structures via global memory since some data types, such as int,

are 32-bits in Win32 and 16-bits in Windows 3.1.
The UT stub and the callback thunk are associated with the 32-bit module whose
module handle is passed to UTRegister. Only one UT can be registered per DLL at any
given time.
UTUnRegister allows the dynamically created UT to be destroyed and the 16-bit DLL
freed. Win32s will clean-up these resources automatically when the Win32 process
terminates, either normally or abnormally.
1. Win32s will destroy the UT and call FreeLibrary for the 16-bit DLL when:

• UTUnRegister is called.
• The module that created the UT is unloaded, either normally or abnormally.

2. The shared memory accessed via the thunked data pointer will be freed as part of
normal process cleanup if the process itself does not free the memory.

3. The 32-bit callback function should not be used by 16-bit interrupt handlers. The
Win32 API does not support locking memory pages; therefore, an interrupt service
routine that calls back into 32-bit code cannot guarantee that the code is currently
paged into memory.

Translation List
One of the parameters passed to the callable stub (either 32-bit or 16-bit) is a
translation list. If you want to pass a reference to a structure containing pointers, you
should use a translation list (see Figure 4) which indirectly points to all the pointers to
be translated during the thunking process.

Figure 4. Translation List

Upon a call to UT callable stub:
(*pfnMyDispatch)(lpPerson, SERVICE_ID, pTranslationList);

the thunking process will translate the lpPerson pointer, scan the lpTranslationList and
translate in place all the pointers, change the stack and call the relevant function.

Universal Thunk Implementation Notes
The following information discusses implementation issues that impact application

usage. The UT APIs, parameters and structures are defined in Appendix C. The UT
headers are located in the \MSTOOLS\WIN32S\UT directory.
1. The file W32SUT.H should be included when using UT services. On the 32-bit side

W32SUT_32 should be defined before including the file. On the 16-bit side,
W32SUT_16 should be defined.

2. A 32-bit DLL using UT services should be linked with the library W32SUT32.LIB. A 16-
bit DLL should be linked with the library W32SUT16.LIB.

3. UTRegister and UTUnRegister are exported by KERNEL32.DLL.
UTLinearToSelectorOffset and UTSelectorOffsetToLinear are exported by
WIN32S16.DLL

4. Only one UT may exist for each Win32 DLL. Additional calls to UTRegister will fail
until UTUnRegister is called.

5. Win32s will destroy the UT and call FreeLibrary for the 16-bit DLL when:
• UTUnRegister is called
• The Win32 DLL is freed, either normally or abnormally

6. Memory allocated by 16-bit routines via GlobalAlloc should be fixed via GlobalFix.
It must be translated to flat address before it can be used by 32-bit code. Translation
will be performed by Win32s if passed as lpBuff or by using the translation list. It can
also be translated explicitly via UTSelectorOffsetToLinear before it can be used by
32-bit code.

7. The 32-bit callback function should not be used by 16-bit interrupt handlers. The
Win32 API does not support locking memory pages, therefore an interrupt service
routine which calls back into 32-bit code cannot guarantee that the code is currently
paged into memory.

8. Exception handling can be done in 32-bit code only. Exceptions in 16-bit code will be
handled by the last 32-bit exception frame.

Two samples are provide on the Win32 SDK CD-ROM which illustrate how to use and
build a UT application:
• \MSTOOLS\WIN32S\UT\SAMPLES\UT_DEF illustrates the fundamental pieces required

to use the UT.
• \MSTOOLS\WIN32S\UT\SAMPLES\UTSAMPLE is a buildable UT sample which calls

several 16-bit APIs and returns data to the Win32 application.

Note
The UT has been tailored to Windows 3.1 which provides a single address space for all
processes. Applications which use the UT may have dependencies to Windows 3.1. The
UT should be considered a stepping stone to fully 32-bit applications. It is very
important to isolate UT code in separate DLLs. These DLLs can be more easily replaced
if future operating systems, offering preemptive multitasking and separate address
spaces constrain UT support or do not provide a UT at all like Windows NT. The DLL can
be replaced with platform-specific versions, isolating the application.

CHAPTER 5 Win32s Development with
the Win32 SDK
Win32 SDK Support
The Win32 SDK provides all the tools necessary for creating a Win32 application on
Windows NT.
After a Win32 application has been debugged and fully tested on Windows NT, you are
ready to install Win32s and your Win32 application on Windows 3.1 for final testing and
verification. The Win32 SDK provides a floppy-disk image containing a redestributable
version of Win32s with a Setup program and FreeCell, a card game test application. You
can choose to bundle this disk with your product or use the Win32s Setup Toolkit
development files to customize your own application and Win32s installation program.
For further details on Win32s redistributable files, refer to the Win32 SDK License
Agreement.

Installing Win32s Development Files
The Win32s system files, Setup Toolkit for Win32s, and the development files are
provided on the Win32 SDK CD-ROM in the \MSTOOLS\WIN32S directory. These files are
intended for use on a Windows 3.1 system. Two versions of Win32s are provided to aid
debugging:
• A debug version with additional Win32s asserts and diagnostic messages.
• The nondebug (end-user) version of Win32s.
• Symbol files for both debug and nondebug systems are provided to obtain symbolic

information in stack dumps and when using the kernel debugger.

Also included are the sources to the Setup program used in the Win32s Setup program.
These files should be used in conjunction with the 16-bit Microsoft Setup Toolkit to
create and customize your own setup program.
To install the Win32s development files onto a Windows 3.1 system, first install Win32s
by using the Win32s Setup program described in Chapter 1, then follow these steps:
1. Start MS-DOS with appropriate software for accessing a local CD-ROM drive or a

remote CD-ROM drive over the network.
2. Access the Win32 SDK CD-ROM.

Type the drive letter and press enter. (For examplex:, where x: is the CD-ROM drive or
network drive containing the Win32 SDK CD-ROM)

3. Change directories to the Win32s files by typing cd \mstools\win32s.
4. Type install and press enter.
5. The INSTALL batch script will provide usage information on how to specify the

destination directory for the Win32s files.

Porting Tool
Win32s allows applications to call any Win32 API function. Win32 functions that cannot

be supported in Windows 3.1 generally errors. A spreadsheet listing all Win32 APIs and
whether the API is supported on Win32s is located on the Win32 SDK CD-ROM in \
MSTOOLS\LIB\I386\WIN32API.CSV, a comma-separated file.
To help programmers determine whether they have inadvertently referenced
unsupported Win32 functions, the Win32 SDK provides a porting tool and a data file,
WIN32S.DAT, that lists all unsupported Win32 functions on Win32s. Read WIN32S.DAT
into the porting tool, load your application source code, and let the porting tool scan
your sources.
To read the file into the porting tool:
1. First install the Win32 SDK
2. Rename PORT.INI in \MSTOOLS\BIN to PORT.DAT
3. Rename WIN32S.DAT in \MSTOOLS\BIN to PORT.INI
4. Start Porting Tool (from the Win32 SDK Program Group)
5. Load a source file to be analyzed
6. Select Interactive or Background port to have unsupported Win32 functions found

and highlighted

Note
For more information on using the porting tool, run PORTTOOL and bring up on-line help.

Debugging and Testing
The Win32 SDK tools running on Windows NT provides the primary development and
debugging environment for creating Win32 applications. A Win32 application should be
fully functional and debugged using WinDbg on Windows NT before running the
application on Win32s. There are several debugging solutions available to help test and
debug Win32 applications running on Windows 3.1: remote WinDbg, debugging DLLs,
profiling DLLs, and the Windows 3.1 kernel debugger.

Remote WinDbg
The remote WinDbg solution makes it possible to remotely debug your Win32
application running on Windows 3.1 (a second system) from your Windows NT
development machine (primary system). The Windows NT system is the development
system with full sources for the application where WinDbg remotely debugs the Win32
binary running on the secondary Windows 3.1 system. Since primary development and
debugging should already be complete on Windows NT, this remote debugging
technique should only be necessary to debug unique problems that occur when the
Win32 application runs on Windows 3.1.

Figure 5. Dual Development/Debugging Systems

Figure 6. Serial Cable Wiring Diagram
Binary debugging data is passed between the Windows 3.1 and Windows NT systems,
therefore a cable that supports hardware handshaking (HW) is recommended. XON/XOFF
flow control is also supported if a minimally wired NULL modem cable is used, but
transfer is somewhat slower since data must be translated for transfer. Figure 6
illustrates standard cable wiring that should be used with the remote debugger.

Note
The cable layouts in Figure 6 are for standard DB-9 serial connectors. Be sure to refer to
your serial card manufacturers manual for complete cabling information.

When setting up the remote debugger transport, be sure to specify XON/XOFF or HW
(hardware handshaking) to match the cable that you are using. Also, make sure that you
match the handshaking of the WinDbg and Remote WinDbg transports; both should be
XON/XOFF or both should be setup for HW.
Remote WinDbg has better response with high communication baud rates and using HW
rather than XON/XOFF control. Typically, a baud rate of 19.2K should be used. Test your
connections before attempting to debug by using the Terminal program that ships with
both Windows 3.1 and Windows NT.
Install Win32s and your application on the Windows 3.1 system. The following remote
debug components should also be installed on the Windows 3.1 system into a directory
that is referenced by the PATH environment variable:

• WINDBGRM.EXE
• DM32S.DLL
• TLSER32S.DLL

These files are located on the Win32 SDK CD-ROM in the \MSTOOLS\BIN\I386 directory.
Figures 7a and 7b illustrate how to setup the WinDbg and WinDbgRM transports to use
COM1 at 19,200 baud with XON/XOFF control.

Figure 7a. WinDbg Transport Dialog Box

Figure 7b. WinDbgRm Transport Dialog Box
WinDbg minimizes the amount of information transmitted across the serial line by
accessing symbols out of the local version of the application binaries located on the
development system. WinDbg is designed to access the source code on the
development system thus saving enormous communication overhead that would
otherwise be required if symbols and source code information was transferred over the
serial line.
The remote debugging environment requires that binaries be located on the same
drive/directory on both the development and target systems. For example, if
win32app.exe is built from sources in a c:\dev\win32app directory, the binary should be
located in this directory on both systems. If you build your source files by specifying
fully qualified paths for the compiler, the compiler will place this information with the
debug records which will allow WinDbg to automatically locate the appropriate source
files.
WinDbg expects the sources to be in the same directory where the binary is built, but
WinDbg allows browsing for them if the sources are not found in the default location.
The Win32 SDK allows applications to be built with CodeView, COFF debugging symbols
or both. The makefiles provided with the Win32 SDK samples, illustrate the compiler and
linker switches required to build CodeView symbols for WinDbg. For compiling, use -Od
and -Zi to turn off optimization and specify CodeView symbols, respectively. Specify -
debug:full and -debugtype:cv when linking with LINK32.

Debugging Session Example
To initiate a debugging session, begin with the Windows NT system:
• windbg c:\dev\win32app\win32app.exe(where win32app.exe is the name of your

binary and c:\dev\win32app is the location to the binary on both systems).
• Select the WinDbg menu Options/Debug Options/Debugger DLLs and set the

Transport to SERIAL192. Set the serial port communication parameters.

On the Windows 3.1 system:
• Run windbgrm.exe.
• Select the WinDbgRm menu Options\TransportDLLs and set the Transport to

SERIAL192. Adjust the serial port parameters to match the WinDbg on the Windows
NT system.

• Press Connect.

Now return to the Windows NT system:
Step into the application. This will establish the communication connection.

• Once a connection is established, WinDbgRm will disappear. When the debugging
session ends or the connection is broken, WinDbgRm will reappear to allow you to
reconnect or exit.

At this point you can now debug the application just as you would if you were debugging
locally on the Windows NT system; you can set breakpoints, single step, display locals,
structures, etc.

Note
WinDbg is designed for 32-bit and 16-bit debugging on Windows NT, but only 32-bit
debugging on Win32s. Therefore, do not use WinDbg to trace into Universal Thunks or
attempt to set breakpoints in 16-bit code. Using both the kernel debugger (WDEB386)
and WinDbg simultaneously is not recommended.

Win32s Debugging DLLs
The Windows    3.1 SDK provides two environments for debugging or testing your
Windows applications: a debugging version of the retail Windows product and a
nondebugging version. The same is true for Win32s shipped with the Win32 SDK; there
are debug and nondebug versions of Win32s.
The debugging version of Windows 3.1 consists of a set of DLLs that replace the
Windows system DLLs of the retail product. The debugging DLLs provide error checking
and diagnostics messages that help you debug    a Windows application. Along with the
DLLs, symbol files are also provided to help trace calls into Windows and Win32s.
During application development, you should use the debugging version of Windows.
Switch to the nondebug versions for final application testing. To simplify switching
between debug and nondebug Win32s binaries, use the SWITCH.BAT file located in the \
MSTOOLS\WIN32S\BIN directory. Usage information is provided by invoking this batch
file with no parameters.

Note
Do not ship the debugging version of the Win32s files with your application. In addition
to the performance overhead present in the debug versions, the license agreement on
Win32s Redistributables only covers the nondebug files.
The Win32 SDK provides debugging versions of the Win32s DLLs. It is necessary to
obtain a Windows 3.1 SDK for the Windows 3.1 debugging DLLs. The Windows 3.1 SDK
also provides additional details on how to use the debug DLLs.

Automated Testing Using Microsoft Test
Microsoft Test is an automated testing tool that facilitates building test scripts for
regression testing, profiling and quality assurance. The Win32 SDK provides a 32-bit
version of Microsoft Test which can be used to test your Win32 applications on Windows
NT.
The same scripts built using 32-bit Microsoft Test on Windows NT can be used with the
16-bit version of Microsoft Test for Windows 3.1 to test Win32 applications using Win32s.
This will help verify and guarantee that your Win32 application functionality is identical
regardless of running on Windows NT or Windows 3.1.
The 16-bit Microsoft Test product is available separately from Microsoft and is not part of
the Win32 SDK which ships 32-bit tools.

Application Profiling
The Win32 SDK provides tools for profiling Win32 applications on Windows NT. One such
tool allows calls to the Win32 API to be profiled to help determine how applications are
calling the system and what calls are taking the longest.
The API profiling tool modifies the applications .EXE and .DLLs (if any) so that it
dynamically links to a set of profiling DLLs. This is done separately from the compile and
link process. The API profiling tool, APF32CVT.EXE, is provided with the Win32 SDK and
should be used on Windows NT to modify the Win32 binary.
In the \MSTOOLS\WIN32S\PROFILE directory you will find several profiling DLLs:
ZERNEL32.DLL, ZSER32.DLL and ZDI32.DLL. These profiling DLLs should be used on
Windows 3.1 for Win32s profiling. The profiling DLLs can be placed in the same directory
as the Win32 application being profiled.
Once you have verified that profiling is working on Windows NT, you can use the same
modified Win32 application for API profiling on Windows 3.1 using the Win32s versions
of the profiling DLLs. For more information, see the Win32 SDK Getting Started.

Kernel Debugger
The Windows 3.1 kernel debugger is fully documented in the Windows 3.1 SDK. An
updated copy of the debugger (WDEB386.EXE) is provided on the Win32 SDK CD-ROM.
The following kernel debugger notes should be sufficient regardless of whether you
have the Windows 3.1 SDK.
Windows NT executables (PE format) support COFF and CV4 debug and symbol
information. The Windows 3.1 kernel debugger supports a third, older format, SYM. The
utility MAPSYMPE.EXE provided in the Win32 SDK creates a separate SYM file from COFF
symbol information (which is embedded in the PE file). MAPSYMPE.EXE can be run on
Windows NT as the final stage of your build process.
Since WinDbg uses CV4 debug information and MAPSYMPE.EXE uses COFF debug
information, it is important to link your application correctly to get the proper debug
data for debugging. When creating a debug version of your Win32 application that will
be used with the kernel debugger, specify:
-debug:full -debugtype:coff.

Specifying -debugtype:both creates both CV4 and COFF symbols, but no
COFF line numbers are generated; therefore this option is not useful for kernel
debugging.

Debugging notes:
1. Link your Win32 application with -debugtype:coff for kernel debugging (WinDbg

requires -debugtype:cv).
2. Use mapsympe.exe to generate a .sym file.

mapsympe -o win32app.sym win32app.exe

Add a -n if mapsympe complains about too many line numbers.
3. Invoke windows kernel debugger:

wdeb386 /c:n /x /s:win32app.sym [/s:win32s.sym ...] \windows\win.com

An alternative way is to use an input file, as follows:
Create the file win32s.dbg with contents of:
/c:1
/x
/s:win32app.sym
/s:win32s.sym
...
\windows\win.com

Invoke the debugger:
wdeb386 /f:win32s.dbg

4. The debug version of Win32s provides basic facilities to monitor application
execution. These features are triggered by setting bits in a debug flag, and are
intended to help in Win32s system development. Some may be helpful for application
development, as well.
Add a line to <windows-directory>\system.ini in the [386Enh] section:
Win32sDebug=xxxxxxxx

where xxxxxxxx is a hex value combined with the following flags:
• 00000001:Verbose. Print messages including notification on application loading

and termination, and exceptions.
• 00000002: Stop on fatal exceptions. Causes thedebugger to stop on abnormal

exception such as divide by zero, general protection fault, invalid instruction, etc.
These exceptions are not necessarily fatal. A general protection fault may occur
while Windows checks whether a given hWnd is valid. Even if the exception is
abnormal, such as divide by zero, it may be handled gracefully by Win32 SEH
mechanism (try/except structure). The Go command will resume execution.

• 00000004: Stop at 16-bit and 32-bit initialization code,and just before DLL
initialization. Allows setting break points in application and DLL initialization
routines.

• 00000008: Print message for Win16 APIs that are called. This includes most USER
and GDI calls and many KERNEL APIs.

• 00000010: Stop on SetError
• 00000020: Verbose loader
• 00000040: Message return codes displayed before and after thunking
• 00000080: NE resource table information
• 00000100: SEH information
• 00000200: Paging information

• 00000400: Unimplemented/unrecognized message warnings
• 00001000: Trap NULL pointer usage in 32-bit code (similar to 0x2) but for page

faults only.
• 00002000: Stop after loading completed. See 0x4.
• 00004000: Trace Virtual Memory Manager in VxD
• 00010000: Pass all int 1 to ring 3 (for debugging hi-level debugger while wdeb386

present)
• 80000000: Pre-load all modules (disable demand paging of modules). With

demand paging you may not be able to set a break point if the page is currently
not present. It is possible to use 386 debug registers (br e address) for up to four
break points. This debug flag causes all modules to be pre-loaded so code be
disassembled and break-points be set.
To assist setting the debug flags, the WIN32SDB.EXE utility (located in the \
mstools\win32s\bin directory) can be used to set/check the state of the debug
flags:

Figure 8. WIN32SDB.EXE Utility

The result of setting the following flags is to make the following change in
SYSTEM.INI:
[386Enh]
Win32sDebug=00000022

5. All Win32 functions are defined in Win32s, so every Win32 application can be loaded.
Yet, many functions are not supported on Win32s, like security services. Calling these
functions will return error values, which depend on the function; the last error is set
to ERROR_CALL_NOT_IMPLEMENTED. In debug versions of Win32s, a message with
the name of the unsupported API function is printed on the debug terminal.

6. Win32s debugging requires large amount of contiguous virtual memory. You should
have at least 4MB of physical memory. You can increase the amount of virtual
memory by using the 386 Enhanced applet in the Windows Control Panel. From 386
Enhanced, click the Virtual Memory button, and click the Change button.

7. You can switch between using the debug version of Win32s and the end-user
(nondebug) version by using the SWITCH.BAT file, which is installed onto the Windows

3.1 system using INSTALL.BAT. Run SWITCH for usage information. This script lets you
switch between debug and nondebug versions, allowing complete testing using the
additional debug support provided by the debug version and verifying the application
on the end-user version (nondebug). Note: Be sure to run SWITCH.BAT from the
directory where this file resides.

CHAPTER 6 Shipping Win32s with Win32
Applications
Windows 3.1 was released in April of 1992. Therefore, Win32s is not built into Windows
3.1 and it is necessary for software vendors to ship and install Win32s along with the
Win32 application in order to work on Windows 3.1. The key feature of Win32s is to
allow software developers to ship Win32 applications today for Windows 3.1 and
Windows NT that will continue to install and work well on future Windows operating
systems. Therefore, it is necessary to create setup programs today that properly handle
various setup issues when installing on current and future operating systems.
The Win32s Setup program provided with this Win32 SDK addresses all of the issues
raised below. The sources for the Win32s Setup program are also provided. This will
allow you to create a custom graphical setup program which addresses the system
setup issues correctly and save time by reusing an existing solution. The Win32s Setup
program is built using the Setup Toolkit shipped with the Microsoft Windows 3.1
Software Development Kit, Microsoft C 7.0 Compiler, and available separately from
Microsoft.

Win32s Installation Rules
In order to ship a single Win32 application which correctly installs on Windows 3.1 and
Windows NT, a setup program should meet the following minimum requirements:
• Install Win32s files on Windows 3.1 systems running in Enhanced Mode with paging

enabled (paging is enabled by default in a Windows 3.1 installation)
• Do not install Win32s files if Win32s is already installed (version check)
• Install only Win32 applications on Windows NT (do not install Win32s files)

These minimum installation requirements assure that Win32s files are only installed on
systems that require them (Windows 3.1) and not Windows NT since Windows NT is
capable of running Win32 applications as-is.
A Win32s setup program should also meet the following criteria:
• Detect Windows 3.0 or lower, provide an informative error message, and do not

install Win32s.
• Detect Windows 3.1 running in standard mode, give an informative error message,

and do not install Win32s.
• Be prepared for possible future releases of Windows. Win32s should not be installed

on any Windows version 4.0 or later since such versions should be able to run Win32
applications directly.

• Detect the presence of Windows NT and only install the Win32 application, not
Win32s since Windows NT runs Win32 binaries directly.

• If setup detects that Windows NT is running, test whether this is a RISC-based
system. If RISC-based, setup should fail with appropriate message (or install R4000 or
DEC Alpha version of the Win32 application).

• Setup should check for presence of Win32s and only install a later version of Win32s
(call GetWin32sInfo exported by W32SYS.DLL and documented in Appendix C).

• Any future updates to Win32s will have higher version numbers, so that new versions

can overwrite earlier releases.

While the list of setup issues above seems long, a simple set of tests can detect these
conditions.    It is necessary to use a 16-bit installation program to install Win32s since
Win32s isnt necessarily running yet.    It is recommended that you use a Win16 program
(rather than MS-DOS) and preferably based on the Win32s Setup program that ships
with the Win32 SDK.    Several APIs can be called from a Win16 program to determine
the version of the system, version of Win32s and the platform:
• GetVersion: Determine version number of Windows (for MS-DOS), Windows NT

(returns 3.1) and past and future versions of Windows.
• GetWinFlags: Flag indicates whether Win16 application is running on Windows NT.

Test for 0x00004000: if set, then running on Windows NT.
• _environ: Use this C run-time function to determine if on RISC-based system.

Windows NT runs Win16 applications via an emulator on RISC systems. Therefore,
Setup should first determine if the system is Windows NT using GetWinFlags (as
discussed above), then check the environment variable PROCESSOR_ARCHITECTURE
is equal to INTEL before installing an x86-based Win32 application (or install the
appropriate RISC binary).

To determine the version of Win32s that is installed, Win32s 1.1 has added an exported
function from W32SYS.DLL to make it easy to determine the version number.
W32SYS.DLL is a 16-bit DLL and this function should be called from a 16-bit Windows
Setup program:
Before shipping a Win32 application, it is critical to fully test your application on
Windows 3.1, Windows for Workgroups, and Windows NT. As discussed previously, the
Win32 SDK includes a version of Microsoft Test which can be used to create automated
test scripts that test application functionality on both Windows NT and Win32s.

Win32s File Installation and
Configuration
This section lists all Win32s files and the directories that the files must reside. The
complete set of files must be installed. Partial install will affect other Win32 applications
that rely on Win32s to run. All Win32s files contain version information. Your setup
program must version check every file and only install the most recent version on a file
by file basis.

Note
Win32s setup programs must implement version checking. Win32s 1.0 has already been
released. Only a Win32s 1.1 set of files must install over an existing 1.0 installation. A
Win32s 1.0 setup program must not install over a Win32s 1.1 installation.

The following set of Win32s files must be installed in the <windows>\system directory
(where <windows> is the drive and directory that windows has been installed in, such
as c:\windows):
OLECLI.DLL
W32SYS.DLL
WIN32S.INI*
WIN32S16.DLL
WINMM16.DLL

* The WIN32S.INI file is not shipped as part of Win32s but should be created during
setup as discussed in the next section.
The following set of Win32s files must be installed in the <windows>\system\win32s
directory:
advapi32.dll
comdlg32.dll
crtdll.dll
c_1252.nls
c_437.nls
c_850.nls
gdi32.dll
kernel32.dll
lz32.dll
mpr.dll
netapi32.dll
ntdll.dll
olecli32.dll
olesvr32.dll
sck16thk.dll
shell32.dll
unicode.nls
user32.dll
version.dll
w32s.386
w32skrnl.dll
win32s.exe
winmm.dll
winspool.drv
wsock32.dll

Once the files are installed, Win32s is enabled by loading the Win32s VxD. As with any
VxD, this is accomplished by adding a device= reference in the [Enh386] section of the
Windows SYSTEM.INI file:
[Enh386]
device=c:\windows\system\win32s\w32s.386

Multimedia wave callbacks are enabled by having the WINMM16.DLL loaded when
Windows boots. This is accomplished via the [Boot] section of SYSTEM.INI file. Add
WINMM16.DLL to the device= line as below:
[Boot]
device=mmsytem.dll winmm16.dll

Please refer to the License Agreement concerning Win32s Redistributable Files.

Win32s Setup Sample
As part of the Win32s development files, a sample setup project is provided that will
recreate the Win32s Setup floppy-disk image, which is also provided on the Win32 SDK
CD-ROM. After installing Win32s, you will find a \WIN32S\SETUP directory containing
Microsoft Setup Toolkit binaries, floppy disk layout files, and sources to Setup extensions
that are used to install Win32s. You are encouraged to use these Setup files to build
your own Win32 application and Win32s installation program.
You will find the following Win32s Setup Sample files:

• \WIN32S\SETUP contains the layout files and required Setup Toolkit binaries.
• \WIN32S\SETUP\BLDCUI contains the sources and dialog templates for Win32s Setup

screens.
• \WIN32S\SETUP\INIUPD contains the Setup extension DLL that is used to determine:

1. If Win32s is already installed.
2. Calls GetWin32sInfo exported by W32SYS.DLL to determine if installed version of

Win32s is earlier release.
3. Adds the VxD entry to SYSTEM.INI.

• \WIN32S\SETUP\BUILD.BAT is used build the floppy-disk image in \WIN32S\FLOPPY.

The FreeCell sample consists of three files: FREECELL.EXE, FREECELL.HLP, and
CARDS.DLL. To ship your own application, modify the following setup sample files and
change the FreeCell references as appropriate for your application:
• W32S.LYT contains the names of the files to install and destination directories and

whether the files are compressed or not.
• W32SINST.MST contains strings used to add FreeCell to a Program Group named

Win32 Applications.
• DIALOGS.DLG in the BLDCUI directory contains the dialog definitions and text for the

Setup screens.

The Win32s Setup program creates/updates a WIN32S.INI file in the \WINDOWS\SYSTEM
directory with the following information:
[Win32s]
Setup=1
Version=1.1.0.0
[Nls]
AnsiCP=1252
[FreeCell]
Setup=1
Version=1.1.0.0

The [Win32s] section indicates whether Win32s is fully installed (Setup=1 when Win32s
is correctly installed.) This section should list the current version of Win32s that is
installed. The [Nls] section instructs Win32s which code page should be used for
translation. If the [Nls] section is not present, code page 1252 is used by default. See
the earlier International Support section for further information.
The WIN32S.INI file can also be used by Win32 applications to indicate what Win32
applications have been installed, and what version of Win32s was installed at the time
the application was installed. FreeCell is listed above as an example of a Win32
application entry. The example indicates that Win32s version 1.1 was installed.
The Win32s Setup program requires the 16-bit Microsoft Setup Toolkit, which is a separate product available
from Microsoft that was previously bundled with the Microsoft® C/C++ version 7.0 compiler.

Note
The disk layout utility that ships with the Microsoft Setup Toolkit uses COMPRESS.EXE for
file compression. There are several versions of this utility shipped with other products.
Be sure that the version shipped with the Microsoft Setup Toolkit is first in the PATH
when building the Win32s Setup sources.

APPENDIX A Win32s Version 1.1 Release
Notes
Unsupported Features
The following features are being considered for a future release on Win32s 1.1:
• OLE version 2.0
• MAPI
• ODBC
• RPC

The following Win32 features are not currently planned for Win32s:
• Console APIs
• Unicode APIs (Win32s 1.1 does support Code Page/Unicode translation APIs)
• Security APIs
• Comm APIs
• Asynchronous File I/O
• Threads
• Paths (graphics object)
• Enhanced Metafiles
• Bezier curves

While it is impossible to include all of the features listed above in a future Win32s
release, your feedback on desired features is very important. Please post your
suggestions on the CompuServe® MSWIN32 forum in the API-Win32s section.

APPENDIX B System Limits
The following programming information lists Windows 3.1 and Windows NT differences
that programmers should be aware of when designing a Win32 applications which will
run on both platforms. Reviewing these differences can save time developing and
debugging applications.

Window Manager (User)
Win32s relies on Windows 3.1 to provide standard dialog controls such as list boxes,
combo boxes, and edit controls. Win32s translates messages between the controls and
the Win32 application.
Controls have size limitations that do not exist on Windows NT. An edit control, for
example, is limited to somewhat less than 64K of text; list boxes store data in one 64K
heap. Therefore, a Win32 application can create a large file by way of an edit control in
Windows NT and not be able to read the file back into the same edit control when the
Win32 application is run with Windows 3.1.
Controls support specifying limits on the amount of information they will hold, such as
EM_SETLIMIT for edit controls. One solution is to specify a lowest common denominator
for controls to ensure compatibility across platforms. Other solutions are application
specific.
Win32s does not support EM_SETHANDLE and EM_GETHANDLE. These messages allow
the sharing of local memory handles between an application and the system. In Win32s
an applications local heap is 32-bits and allocated from the global heap, so Windows 3.1
cannot interpret a local handle. Text for multi-line edit controls is stored in the 16-bit
local heap. This means that the amount of edit control text is limited to somewhat less
than 64K. To read and write multi-line edit control text, an application should use the
WM_GETTEXT and WM_SETTEXT messages.
Any private application message must be defined above WM_USER + 0x100. This will
ensure that there is no collision between private messages and dialog control messages
on Windows 3.1.
When calling the PeekMessage function, a Win32 application should not filter any
messages for Windows 3.1 private window classes (button, edit, scroll bar, etc.). The
messages for these controls are mapped to different values in Win32, and checking for
the necessity of mapping is a time-consuming operation.
Win32s child window identifiers must be sign-extended 16-bit values. This precludes
using 32-bit pointer values as child window IDs.
Windows NT dynamically grows the message queue size. Windows 3.1 has a default
message queue size of 8 which can be changed by calling SetMessageQueue. This
call is supported in Win32s and is a NOP on Windows NT.
SetClipboardData must be called with global handles otherwise the data can not be
accessed by other applications.
Applications specify the return value for the DialogBox function by way of the nResult
parameter to the EndDialog function. This parameter is of type int, which is 32-bits for
Win32 applications. However, this value is thunked by Win32s to the Windows 3.1
EndDialog function, which will truncate it to 16-bits. Win32s sign-extends the return
code from DialogBox.

TranslateMessage has additional support on Windows NT than on Windows 3.1.
Win32s provides the Windows 3.1 functionality which is to return TRUE when any key or
number is typed (which generates a KEYDOWN/KEYUP sequence). On Windows NT,
function and arrow keys will also result in TranslateMessage returning TRUE. Few
applications test the return value from TranslateMessage.
Resource IDs (identifiers in resource files) must be 16-bit values.
The resource table size is limited to 32K (not including the resource data).

Graphics (GDI)
Windows 3.1 has a limit of five cached device contexts (DCs). The GetDC call obtains a
cached DC in Windows 3.1; therefore, it is important to call ReleaseDC before checking
the message queue. Otherwise, another application may be scheduled and there will be
one less cached DC for all applications in the system. Windows NT does not have a
cached DC limit but applications should not waste DCs. It is important to follow the
GetDC/ReleaseDC model for compatibility on both platforms and good memory
management.
Windows 3.1 allows drawing objects (pens and brushes) to be deleted while still
selected into a DC. However, the memory allocated for the drawing object remains
allocated until the process terminates. Windows NT fails the DeleteObject call.
Applications should not delete selected objects or they may slowly use up system
resources while the application is running on Windows 3.1.
SetDIBitsToDevice is not supported for bitmaps in memory DCs, and is limited to
bitmaps of up to 2MB when blting to the display.
Process cleanup assures that all objects allocated by an application exiting the system
are destroyed and the memory freed for reuse by the system or other applications.
Windows 3.1 added additional robustness and process cleanup compared to Windows
3.0, but is not as complete as Windows NT. Win32 applications running on Windows 3.1
must abide by the same rules as 16-bit Windows applications and properly free objects
allocated while running, especially pens, brushes and other graphics objects.
Windows 3.1 has a 16-bit world coordinate system. Windows NT supports a 32-bit world
coordinate system. Therefore, it is necessary to use the Windows 3.1 limit in developing
a Win32 graphics application that will run with both Windows 3.1 and Windows NT.
Windows NT allows Win32 applications to call SetCursor and specify an icon handle.
Windows NT supports color icons and color cursors; Windows 3.1 only supports color
icons and monochrome cursors. Therefore, you cannot pass an icon handle to
SetCursor on Win32s.

System Services (Kernel)
Win32s processes that are started by Win16 applications should be launched using
WinExec. The Win16 version of LoadModule will not start a Win32s process. If using
the Win32 version of LoadModule, note the following difference in specifying the
lpCmdLine in the LOADPARAMS32 structure passed to this function:
• On Windows NT, lpCmdLine points to a Pascal-style string that contains a correctly-

formed command line. The first byte of the string contains the number of bytes in the
string. The remainder of the string contains the command line arguments, excluding
the name of the child process. If there are no command line arguments, this

parameter must point to a zero length string; it cannot be NULL
• On Win32s, lpCmdLine points to a null-terminated string that contains a correctly-

formed command line. The string must not exceed 120 bytes in length.

VirtualAlloc provides a feature on Windows NT allowing theprocess to request the
memory allocation at a specified virtual address. This is supported on Win32s but
applications should not depend on address range that is available. Windows NT
allocates memory in the low 2GB address space, Win32s allocates memory in the high
2GB address space. Applications can query the address space using GetSystemInfo.
Do not specify GMEM_FIXED when using GlobalAlloc. On Win32s, this will result in
locked pages in memory. Therefore, allocations will be limited to physically available
memory rather than virtual limits (pageable memory allocations).
The implementation of the Sleep Win32 API differs in Win32s and Windows NT. On
Win32s, this function calls Yield which will return immediately if a) no other applications
have messages in their message queues awaiting processing or b) the application
calling Yield still has messages in its queue. It is not possible to block for the specified
delay time (as occurs on Windows NT) since Windows 3.1 is a cooperative multitasking
system, not a preemptive multitasking system. Time delays should be implemented in
PeekMessage loops with calls to GetSystemTime to control delay time.
On Windows NT you cannot call DeleteFile and delete a file which is opened (for
normal I/O or as a memory mapped file). On MS-DOS (and therefore Win32s) you can,
even if SHARE.EXE is loaded. Deleting such a file may result in loss of data and
application failure. Therefore, you should be very careful when using DeleteFile and
must ensure that the file is not in use.
The precision of the time of a file is 2 seconds (this is an MS-DOS limitation).
GetPrivateProfileSection and GetProfileSection work only on initialization files that
have unique keys. For example, in the following private initialization file:
[TestSection]
Entry1=123
Entry1=456
Entry1=789
Entry2=ABC

GetPrivateProfileSection will return three copies of the string: Entry1=123.
Windows 3.1 supports a single value (string) per key in its registration database.
Windows NT supports a multivalue per key registration database and new APIs to
manipulate the database. Win32s supports the subset of Win32 registry APIs that map
to Windows 3.1 functionality.
Win32 applications and DLLs should be linked with 4K alignment. This is the default for
the LINK32 linker that ships with the Win32 SDK. 64K alignment is supported, but 4K is
more efficient for the memory manager in the shared 2GB address space of Windows
3.1.

Networking
The WinSocket API supports blocking and non-blocking calls. The WinSocket
specification indicates that blocking calls should be avoided on systems (such as
Windows 3.1) which are non-preemptive. Therefore, a portable Win32 WinSocket
application should use non-blocking calls and will then run well on Win32s and Windows

NT.
Windows NT supports certain NetBios features that are not supported on Win32s due to
the non-preemptive shared memory design of Windows 3.1. The ncb_event field of the
NCB structure is ignored since Win32s does not implement Windows NT events. Also,
Windows NT maintains a per-process name table; Win32s maintains one system-wide
name table.

Multimedia
Win32s supports all multimedia sound APIs provided on Windows NT except for MIDI
callbacks. Therefore, the CALL_FUNCTION flag of midiOutOpen and midiInOpen is not
supported. Multimedia event callbacks (timeSetEvent and timeKillEvent) are also not
supported.
Data passed to any Multimedia APIs which is greater than 32K must be allocated via
GlobalAlloc and locked with GlobalLock. Applications must not use HeapAlloc or
LocalAlloc as there is no way to map the data beyond 32K by the Multimedia API.    As
mentioned previously, use the GMEM_MOVEABLE flag (not GMEM_FIXED) when using
GlobalAlloc. GMEM_FIXED will result in locked physical pages in memory.

APPENDIX C Win32s API Reference
The following functions are supported by Win32s and define interfaces for Setup
programs and the Universal Thunk.

GetWin32sInfo
WORD GetWin32sInfo(lpInfo)
LPWIN32SINFO lpInfo;

Parameter
lpInfo

Points to a WIN32SINFO structure, defined as follows:
typedef struct {
 BYTE bMajor;
 BYTE bMinor;
 WORD wBuildNumber;
 BOOL fDebug;
} WIN32SINFO, far * LPWIN32SINFO;

Returns
The return value is zero if the function is successful. Otherwise the possible values are:
1 VxD not present
2 Win32s VxD not loaded because paging system not enabled
3 Win32s VxD not loaded because Windows is running in standard mode
Comments
Function is exported by W32SYS.DLL in Win32s 1.1. The function fills the specified
structure with the information from Win32s VxD. A 16-bit Windows Setup program
should use this function to determine if Win32s is already installed version and only
install a later Win32s release. The Setup program must use LoadLibrary and
GetProcAddress to call the function since the function did not exist in Win32s 1.0.

Example
// Indicates whether Win32s is installed and version number
// if Win32s is loaded and VxD is functional.

BOOL FAR PASCAL IsWin32sLoaded(LPSTR szVersion)
{
 BOOL fWin32sLoaded = FALSE;
 FARPROC pfnInfo;
 HANDLE hWin32sys;
 WIN32SINFO Info;

 hWin32sys = LoadLibrary("W32SYS.DLL");

 if (hWin32sys > HINSTANCE_ERROR) {
 pfnInfo = GetProcAddress(hWin32sys, "GETWIN32SINFO");
 if (pfnInfo) {
 // Win32s version 1.1 is installed
 if (!(*pfnInfo)((LPWIN32SINFO) &Info)) {
 fWin32sLoaded = TRUE;

 wsprintf(szVersion, "%d.%d.%d.0",
 Info.bMajor, Info.bMinor, Info.wBuildNumber);
 } else
 fWin32sLoaded = FALSE; // Win32s VxD not loaded.
 } else {
 // Win32s version 1.0 is installed.
 fWin32sLoaded = TRUE;
 lstrcpy(szVersion, "1.0.0.0");
 }
 FreeLibrary(hWin32sys);
 } else // Win32s not installed.
 fWin32sLoaded = FALSE;

 return fWin32sLoaded;
}

Universal Thunk API

UTRegister
BOOL UTRegister(hModule, lpsz16BITDLL, lpszInitName, lpszProcName, ppfn32Thunk,

 pfnUT32CallBack, lpBuff)
HANDLE hModule;
LPCTSTR lpsz16BITDLL;
LPCTSTR lpszInitName;
LPCTSTR lpszProcName;
UT32PROC *ppfn32Thunk;
FARPROC pfnUT32CallBack;
LPVOID lpBuff;

This routine registers a universal thunk (UT) that can be used to access 16-bit code from
a Win32 application running via Win32s on Windows 3.1. Only one UT can be created
per Win32 DLL. The thunk can be destroyed by calling UTUnRegister. UTRegister will
automatically load the 16-bit DLL specified. After loading the 16-bit DLL, Win32s calls
the initialization routine. Win32s creates a 32-bit thunk that is used to call the 16-bit
procedure in the 16-bit DLL.
Parameters
hModule

Handle of 32-bit DLL. The UT provides a mechanism to extend a Win32 DLL into
Windows 3.1. The thunk is owned by the DLL and every DLL is limited to one thunk.

lpsz16BITDLL
Points to a null-terminated string that names the library file to be loaded. If the string
does not contain a path, Win32s searches for the library using the same search
mechanism as LoadLibrary on Windows 3.1.

lpszInitName
Points to a null-terminated string containing the function name, or specifies the
ordinal value of the initialization function. If it is an ordinal value, the value must be
in the low word and the high word must be zero. This parameter can be NULL if no
initialization or callback is required.

lpszProcName
Points to a null-terminated string containing the function name, or specifies the

ordinal value of the 16-bit function. If it is an ordinal value, the value must be in the
low word and the high word must be zero.

ppfn32Thunk
Return value is a 32-bit function pointer (thunk to 16-bit routine) if UTRegister is
successful. This function can be used to call the 16-bit routine indirectly.

pfnUT32CallBack
Address of the 32-bit callback routine. Win32s creates a 16-bit callable thunk to the
32-bit function and provides it to the initialization routine. The 32-bit routine does not
need to be specified as an EXPORT function in the DEF file. No callback thunk is
created if either this parameter or lpszInitName is NULL.

lpBuff
Pointer to globally allocated shared memory. Pointer is translated into 16:16 alias by
UT and is passed to the initialization routine. This parameter is optional and ignored if
NULL.

Returns
Function returns TRUE if the DLL is loaded and UT16Init routine was successfully called
or FALSE if an error occurred. Use the GetLastError function to obtain extended error
information. Typical errors are:
ERROR_NOT_ENOUGH_MEMORY
ERROR_FILE_NOT_FOUND
ERROR_PATH_NOT_FOUND
ERROR_BAD_FORMAT
ERROR_INVALID_FUNCTION
ERROR_SERVICE_EXISTS (when the UT is already registered).
Comments
Registering the UT enables two capabilities for communicating between 32-bit and 16-
bit routines. The first capability is to allow a Win32 application to call a 16-bit routine
passing data using globally shared memory. This is a Win32 application initiated data
transfer mechanism. The second capability is to register a callback routine by which 16-
bit code can callback into a 32-bit routine in a Win32 DLL. Again, shared global memory
is used to transfer data.
UTRegister will result in Win32s loading the specified DLL with normal Windows 3.1
DLL initialization occurring. Win32s will then call the initialization routine passing this
function a 16:16 thunk to the 32-bit callback function. The initialization routine can
return data in a global shared memory buffer. The initialization routine must return a
non-zero value to indicate successful initialization.
The initialization routine must return a non-zero value to indicate successful
initialization. If it fails no thunk is created.
UTRegister returns a 32-bit thunk to the 16-bit UT16Proc. This pointer can be used in
Win32 code to call the 16-bit routine:
dwUserDefinedReturn = (*pfnUT16Proc)(pSharedMemory, dwUserDefinedSend,
 lpTranslationList);

The UT will translate the 32-bit linear address of the shared memory to a 16:16
segmented pointer, along with all the addresses listed by lpTranslationList before
passing it to the 16-bit UT16Proc routine.
The 16-bit code can call Win32 code using the callback mechanism:
dwUserDefinedReturn = (*pfnUT32CallBack)(pSharedMemory,
 dwUserDefinedSend, lpTranslationList);

The 32-bit callback routine should be defined as follows (but does not need to be
exported in the DEF file):
DWORD WINAPI UT32CBPROC(LPVOID lpBuff, DWORD dwUserDefined);

See Also
UTUnRegister, LoadLibrary (16-bit version), GetProcAddress (16-bit version)

UTUnRegister
VOID UTUnRegister(hModule)
HANDLE hModule

Requests Win32s to call FreeLibrary for the 16-bit DLL loaded by UTRegister. Also,
destroys the dynamically created UT.
Parameter
hModule

Handle of 32-bit DLL which previously registered the UT.
Returns
No return value.
Comments
This call allows the single dynamically created UT to be destroyed and the 16-bit DLL
dereferenced. Win32s will clean-up these resources automatically when the Win32 DLL
is freed (normally or abnormally).
See Also
UTRegister, FreeLibrary (16-bit version)

UT16INIT
DWORD FAR PASCAL UT16INIT(pfnUT16CallBack, lpBuff);
UT16CBPROC pfnUT16CallBack
LPVOID lpBuff

UT16INIT name is a place holder for the application-defined function name. The actual
name must be exported by including it in the EXPORTS statement in the DLLs DEF file.
This function will be called only once upon calling UTRegister by the 32-bit DLL.
Parameters
pfnUT16CallBack

16-bit thunk to 32-bit callback routine, as specified at registration.
lpBuff

Pointer to general purpose memory buffer that was passed by the 32-bit code.
Returns
1 Upon Success

0 If fail. If the initialization function fails, no stub will be created and UTRegister will
return 0.

See Also
UTRegister

UT16PROC
DWORD FAR PASCAL UT16PROC(lpBuff, dwUserDefined);
LPVOID lpBuff
DWORD dwUserDefined

UT16PROC name is a place holder for the application-defined function name. The actual
name must be exported by including it in the EXPORTS statement in the DLLs DEF file.
Parameters
lpBuff

Pointer to general purpose memory buffer that is passed by the 32-bit code.
dwUserDefined

Available for application use.
Returns
User defined.
See AlsoUTRegister

UT16CBPROC
typedef DWORD FAR PASCAL (*UT16CBPROC)(lpBuff, dwUserDefined,
*lpTranslationList);
LPVOID lpBuff
DWORD dwUserDefined
LPVOID *lpTranslationList

Prototype of the 16-bit callable stub which is called by the 16-bit DLL. The stub will
translate the lpBuff pointer to a 32-bit pointer, scan the translation list and translate all
its pointers to 32-bit pointers, arrange the stack to be a 32-bit stack, and then call the
32-bit procedure in the 32-bit DLL.
Parameters
lpBuff

Pointer to general purpose memory buffer. This segmented pointer is translated to
flat address and passed to the 32-bit callback procedure. This parameter is optional.
If not used, should be NULL.

dwUserDefined
Available for application use.

lpTranslationList
A far (16:16) pointer to an array of far (16:16) pointers that should be translated to
flat form. The list is terminated by a null pointer. No validity check is performed on

the address except for null check. The translation list is used internally and not
passed to the 32-bit callback procedure. This parameter is optional.

Returns
User defined
See Also
UTRegister

UT32PROC
typedef DWORD (* WINAPI UT32PROC)(lpBuff, dwUserDefined, *lpTranslationList);
LPVOID lpBuff
DWORD dwUserDefined
LPVOID *lpTranslationList

Prototype of the 32-bit callable stub which is called by the 32-bit DLL. The stub will
translate the lpBuff pointer to a 16:16 pointer, scan the translation list and translate all
its pointers to 16:16 pointers, arrange the stack to be a 16-bit stack, and then call the
16-bit procedure in the 16-bit DLL.

Parameters
lpBuff

Pointer to general purpose memory buffer. This 32-bit pointer is translated to 16:16
form and passed to the 16-bit procedure. The segmented address provides
addressibility for objects up to 32K. This parameter is optional.

dwUserDefined
Available for application use.

lpTranslationList
Pointer to an array of pointers that should be translated to segmented form. the list is
terminated by a null pointer. No validity check is performed on the address except for
null check. The translation list is used internally and not passed to the 16-bit
procedure. This parameter is optional and if not used should be NULL.

Returns
User defined.
See Also
UTRegister

UT32CBPROC
DWORD WINAPI UT32CBPROC(lpBuff, dwUserDefined);
LPVOID lpBuff;
DWORD dwUserDefined;

UT32CBPROC name is a place holder for the application-defined function name. It does
not have to be exported. That callback function will be called indirectly by the 16-bit
side.

Parameters
lpBuff

Pointer to general purpose memory buffer as passed to 16-bit callback thunk.
dwUserDefined

Available for application use.
Returns
User defined
Comments
Memory allocated by 16-bit code and passed to 32-bit must first be fixed in memory.
See Also
UTRegister

Universal Thunk Auxiliary Services
The following are address translation services available for 16-bit code only.

UTSelectorOffsetToLinear
DWORD UTSelectorOffsetToLinear(lpByte)
LPVOID lpByte;

Parameter
lpByte

Translate a segmented address to flat form;
Returns
Equivalent flat address.
Comments
The base of the flat selectors used by Win32s process is not zero. If the memory is
allocated by 16-bit API it must be fixed before its address can be converted to flat form.
See Also
UTLinearToSelectorOffset

UTLinearToSelectorOffset
LPVOID UTLinearToSelectorOffset(lpByte)
DWORD lpByte;

Translate a flat address to a segmented form.
Parameter
lpByte

Translate a flat address to segmented form.
Returns
Equivalent segmented address (16:16 far pointer).

Comments
The returned address guarantees addressibility for objects up to 32K.
See Also
UTSelectorOffsetToLinear, GlobalFix

Microsoft Win32s Programmer's Reference
Information in this on-line help system is subject to change without notice
and does not represent a commitment on the part of Microsoft Corporation.
The software and/or files described in this on-line help system are furnished
under a license agreement or nondisclosure agreement. The software and/or
files may be used or copied only in accordance with the terms of the
agreement. The purchaser may make one copy of the software for backup
purposes. No part of this on-line help system may be reproduced or
transmitted in any form or by any means, electronic or mechanical, including
photocopying, recording, or information and retrieval systems, for any
purpose other than the purchaser's personal use, without the written
permission of Microsoft Corporation.

(C)    Copyright Microsoft Corporation, 1992-1993. All rights reserved.
          Simultaneously published in the U.S. and Canada.

Portions of this documentation are provided under license from Digital
Equipment Corporation.

(C)    Copyright Digital Equipment Corporation, 1990, 1992-1993. All rights
reserved.

